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Abstract

This project was inspired by cinemagraphs, a style of animated GIFs made out of a compi-
lation of photographs, and brings my study of computer science and photography together.
The aim of the computer science component of the project was to animate specific objects
within a set of photographs, while leaving the rest of the frame static. I employed various
image processing techniques from computer vision and graphics. This eased and automated
some of the repetitive and time consuming portions of the process of generating cinema-
graphs. The challenge was to create an algorithm capable of balancing the accuracy of
detecting the objects with the speed of processing each frame. The project also explored
the limitations and advantages of using Microsoft’s Kinect in artistic pursuits. From a
photographic standpoint, my aim was to make these cinemagraphs presentable for a pho-
tography exhibition, hence the cinemagraphs had to go beyond being eye-catching because
of technical trickery. The cinemagraphs had to hold the attention of the onlooker in spite
of the novelty of the animated motion within the frame. The exhibition was a platform to
explore the boundaries of cinemagraphs as an artistic medium.
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1
Introduction

This project involved taking photographs with a RGBD (red, green, blue, depth) digi-

tal camera and producing cinemagraphs, which are represented by animated GIFs. Using

image-processing algorithms, I separated and tracked an animated object within the frame.

These cinemagraphs utilized formal techniques acquired through my studies at Bard, in-

cluding framing and visual portrayal of space and incorporated visual cues to maintain a

photographic quality. The emphasis of the project was to connect my programming skills

and my ability to visualize space and manifest it in photography.

1.1 Cinemagraphs

Cinemagraphs are still images which contain repeated and endless movements within the

frame. Kevin Burg, a visual graphic artist, and Jamie Beck, a photographer, coined the

term ’cinemagraphs’ for the moving images they created. Their images contain a subtle

motion within a static image.1 A cinemagraph is created by selecting all of the images

which will be used in the animation and choosing which one will be the background image.

Each image is placed on top of a background layer and this current image is edited so that
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only the selected portion of this layer is visible. This visible portion of the image becomes

the animation. Once all the images have been edited they are compressed into an animated

GIF file.

1.2 Personal Artist Statement

My interest in this project was sparked by cinemagraphs created by Jamie Beck, who at-

tempted to create photographs with animated qualities. I was drawn to the unexpected

motion within the frame along with their aesthetic qualities. Photography is about captur-

ing a moment in time often conveying a representation of movement through various visual

techniques. These techniques include slowing down the shutter speed to create a blur of the

moving object and stimulating the viewer’s imagination by having the object positioned

in such a way as to appear to defy gravity. Both of these methods are incomplete attempts

to capture motion. They are merely representations which our brains have been trained

to understand as motion. What I have set out to do in this project is capture a single

movement within a frame to better understand motion’s role in photography.

A majority of cinemagraphs do not hold up as photographs because viewers tend to

perceive them as short video clips. My way of avoiding this issue was to include photo-

graphic artifacts within each frame. I had these cinemagraphs repeat in an attempt to

push beyond the animation and cause the viewer to focus deeper into the frame. This is

similar to the way in which depth of field works in photography. When a camera uses a

small depth of field, everything but the subject of the photograph is rendered out of focus.

This blurry region is something that we cannot see normally because when we look at this

region directly, the blur comes into focus. In my cinemagraphs, instead of a part of the

1Information obtained from: http://cinemagraphs.com/about/
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photograph being out of focus, the blurry region is clear and still, while the subject is in

motion.

My animated cinemagraphs explore the changing relationship between a still world and

a moving subject. Our eyes are instantly drawn to motion, especially in the city. I chose

New York City as the backdrop for this project because it is full of motion. I wanted to

isolate those moments of clarity within the chaos that pervade city life. Each cinemagraph

emphasizes a moment of stillness in an ever changing world through the association of the

viewer with the movement. While most of the time we are too distracted to really perceive

all that is happening around us, these cinemagraphs attempt to do just that. Since the

world cannot be stopped, these frozen backgrounds stop time and allow the viewer to see

interactions that may have been missed and capture what is going in a fleeting moment.

1.3 Image Processing

Computer vision has developed a multitude of strategies for detecting objects within an

image. These strategies analyze pixel data to decide which part of the image is foreground

(the object being selected) and the background (which is everything else). These processes

are known as foreground and background segmentation. Creating a given frame of a cin-

emagraph is accomplished by isolating the foreground and background of a given frame

and then replacing the background of the frame with the background of the cinemagraph.

However, one common problem with this method occurs when only color within the image

is taken into account (Figure 1.3.1). In certain images, most of the pixels share the same

color palette, making it difficult to isolate the foreground from the background.

Recent publications have explored the concept of the using RGBD cameras to capture

color and depth in real-time images[1]. Hence, foreground/background segmentation be-

2Retrieved from Leaves and Petals shop website: http://www.shopleavesandpetals.com/productimage.php?
product_id=53.
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Figure 1.3.1. An image that shows the pixels sharing a similar color palette, making the
foreground background segmentation challenging.2

comes an easier problem to solve because of depth information provided RGBD cameras,

making it possible to create GIF images which are both artistically and technically sound.

I used a RGBD camera to augment commonly used algorithmic implementations for ob-

ject sensing by incorporating the depth component of each pixel. This new implementation

created a more reliable system of object detection.

1.4 Related Work

Creating cinemagraphs using conventional means of image editing software, such as Adobe

Photoshop, is highly time consuming. I investigated published research to speed up the

process of generating cinemagraphs. Recent approaches regarding tracking of non-rigid

objects from a moving camera have included an implementation of mean shift which has

similarities to a Bayesian framework. This allows for speed and efficiency of the tracking[2].

Paris and Durand approached the segmentation of static images with a slower but more

accurate method. They incorporated Morse theory and topology of the images to create
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a hierarchical segmentation model[3]. An alternate method of image segmentation uses an

adaptive learning technique. Torr et al performs interactive image segmentation by using an

adaptive learning process called the “Gaussian Mixture Markov Random Field" model[4].

While performing real-time tracking of people, removing the subject and their shadow is

essential to the presentation of the final image. This process involves creating a background

image in which the person is removed. One approach generates this background using a two-

level, discrete wavelet transform[5]. Recent papers have explored the use of incorporating

depth values to calculate image segmentation more accurately[1]. This paper focuses on

using a combination of user input, data analysis and depth addition to balance processing

time with the accuracy of image segmentation.



2
Semi-Automated Creation of Cinemagraphs

This chapter describes the method developed for creating cinemagraphs. The first step

collects RGB and depth sensor data, which is read in from the RGBD camera and saved

for later use. For this project, the RGBD camera used was a Microsoft Xbox Kinect. In the

next step, the saved data was processed by merging foreground and background images

to create each frame of a given cinemagraph. The final step was to run each frame at the

correct speed to view the cinemagraph.

2.1 Hardware

2.1.1 The Kinect: An RGBD Camera

Kinect is a RGBD camera designed by Microsoft for their gaming console, the Xbox 360.

The primary purpose of the Kinect is motion-detection which allows users to interact with

the gaming environment without the need for hand-held controllers. After the Kinect’s

release, open-source hackers wrote drivers for Linux, Mac and Windows, and wrappers for

C++, Java and Python programming languages. Later, Microsoft released the official SDK

(Software Development Kit).
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Figure 2.1.1 shows the breakdown of all the parts of the Kinect. For this project, the

components of the Kinect that were used were the infrared projector and sensor, which

allows for depth data to be captured, and the RGB sensor, which provides a color image.

Figure 2.1.1. Breakdown of the Xbox Kinect.3

2.1.2 Depth Generation

The depth of an image is generated by a process called stereo triangulation. This process

uses two or more images to calculate the 3D position of the points within the image. The

first image is a hard coded image in the Kinect’s memory. This hard coded image is then

projected from the Kinect’s IR projector. The second image is generated by the Infrared

sensor, which takes a picture of the Infrared projected image. From a comparison of the

hard coded image’s virtual points to the points in the IR projected image, the 3D positions

of the points in the image can be detected. The 3D points are the depth position from the

camera. Figure 2.1.2 is an example of the infrared capture image from the Kinect and a

visual representation of the depth values.

3Retrieved from the Open Kinect website: http://venturebeat.files.wordpress.com/2011/08/kinect-2.jpg
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2.1.3 Experimental Setup

Figure 2.1.2. The IR image (left); the generated depth values as an image (right).4

The Kinect has two auxiliary connections. The first is an input for power. For this project

I needed the Kinect to be mobile. Therefore the power cord had to be modified to allow

it to be connected to a battery instead of an AC adapter. After a few tests, it was found

that the Kinect required a minimum of 10.5 volts to operate which I satisfied with an

off-the-shelf 12 volt lithium-ion battery. The second connection is to a USB device. This

setup is depicted in Figure 2.1.3.

Figure 2.1.3. Schematic diagram of my Kinect setup.

4Retrieved from the Nicolas Burrus website: http://nicolas.burrus.name/index.php/Research/
KinectRgbDemoV4?from=Research.KinectRgbDemo
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2.1.4 Advantages

A Kinect was used for this project for the following reasons:

• The Kinect is a small device which makes it portable and allows for an easy way to
take photographs for my senior exhibition.

• It is significantly less expensive compared to other RGBD camera devices.

• It is an accessible commodity for experimenting with the advantages and limitations
for making cinemagraphs.

• It does not have significant amount of power demands which enables mobility.

• It collects high quality depth data at 30 frames per second.

2.1.5 Disadvantages
Although the Kinect is a useful way to create cinemagraphs, it has the following drawbacks:

• The Kinect was intended to be used indoors. The result of natural IR interference
leads to unreliable depth results outdoors.

• The RGBD camera has extremely low resolution. It only takes images that are 640
by 480 pixels.

• The Kinect has little control over camera functionality, such as focus and f-stop.

• The lack of manual control for light correction results in issues when trying to perform
image segmentation.

2.2 Software

Most photographic editing software is meant to edit individual pictures and does not have

easy-to-use GUIs for mass editing. While using these tools there is a lot time spent opening,

closing and saving each file. In addition, when a new file is opened, all the information

about the last image is lost. This is a missed opportunity for the user since the data could

be used to make guesses as to what should be selected in the newly opened file. The

following three steps are the final processes I came up with to create cinemagraphs.

2.2.1 Data Collection and Synchronization

This step captures and saves the RGB and RGBD data. Since the two cameras are not

located in the same place within the Kinect, the two images do not have a one-to-one cor-
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respondence between frames. This means that before any analysis can be performed, the

depth values must be mapped to their corresponding RGB pixel. During this step a modi-

fied record program is used, which is a part of the Fakenect library5. The unstable branch

of the OpenKinect Library had support for retrieving already synchronized depth to RGB

images from the Kinect in millimeters. Record was modified to dump the synchronized

depth instead of the raw depth information.

The record program saves a dump of the Kinect sensor data at a rate of approximately

30 frames per second in individual files with names in the form “TYPE-CURRENTIME-

TIMESTAMP." Here TYPE is either (d)epth, or (r)gb, TIMESTAMP is the time the image

is seen from the Kinect, and CURRENTTIME corresponds to the time the image began

to be written to the hard drive. For RGB and DEPTH the dump is just the data provided

in PPM and PGM formats, respectively. The RGB data is being stored in a 24-bit format

whereas the depth images are stored in a 11-bit format. These data are being stored in

their respective formats to prevent data loss. The index file logs all of the PPM and PGM

files.

Figure 2.2.1. (left) An example of a PPM/RGB image (right) An example of a
PGM/Depth image

5Retrieved from the http://brandynwhite.com/fakenect-openkinect-driver-simulator-experime
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2.2.2 Foreground Selection Algorithms - Flood-Fill

Various tools were created to edit the photos, all of which are adaptations of the flood-fill

algorithm. The original flood-fill algorithm is recursive in that each neighbor expands its

neighbors which in turn expands their neighbors. The neighbors, however, expand only

if they meet a specific color criterion. In the end, all the pixels of the same color value

are selected. One problem with this approach is that objects appear to be of one color in

photographs but are actually multi-tonal. To fix this problem, instead of having the flood-

fill be based on a single color, it is based on Euclidean distance. The Euclidean distance

equation for an n-dimensional space, where p and q are pixels is:

d(p, q) =
√

(p1 − q1)2 + (p2 − q2)2 + ...+ (pn − qn)2 (2.2.1)

The first tool I created was based on the x and y location of the pixels and this flood-fill

results in a circular selection of pixels:

d1(p, q) =
√
(px − qx)2 + (py − qy)2 (2.2.2)

The next variation was based on color:

d2(p, q) =
√

(pr − qr)2 + (pg − qg)2 + (pb − qb)2 (2.2.3)

A third version used depth in addition to color to get a more accurate Euclidean distance

value:

d3(p, q) =
√

(pr − qr)2 + (pg − qg)2 + (pb − qb)2 + (pd − qd)2 (2.2.4)

I encountered the following problems during the implementation of flood-fill: the max-

imum heap size in Java’s virtual machine was not large enough to handle the number of

recursive calls needed for the number of pixels being expanded and each pixel expanded

in all four directions. Also, two neighboring pixels caused an infinite expansion loop and

therefore will never generate a result. I addressed the first issue by changing the imple-

menting of flood-fill by using one list that contained pixels waiting to be expanded and
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another list of pixels that were already expanded. This implementation worked by using a

loop that only stopped when the list of waiting pixels had all been processed. This means

that the list of waiting pixels continued to grow until there were no more pixels to be

expanded. The approach mentioned above resolved the issue of the heap size being too

small. The problem of the infinite loop was solved by checking to make sure that the pixel

had not already been expanded before adding it to the ‘waiting to be expanded’ list. As

each pixel was processed from the ‘waiting to be expanded’ list, its Euclidean distance

was calculated from the original selected pixel. If the value was smaller than a threshold

distance it was turned on. That was maintained by a look up table of on and off as boolean

values.

Figure 2.2.2. Screenshot of the GUI for creating cinemagraphs.
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Each brush mode (Figure 2.2.2) has associated parameters that the user can control using

the scrollbars below each brush. FLOOD_XY (Equation 2.2.2), FLOOD_RGB (Equation

2.2.3), and FLOOD_RGBD (Equation 2.2.4) have a threshold which control the maxi-

mum Euclidean distance value accepted. This, in turn, determines how far away, based on

Euclidean distance, the pixels can be from the original pixels and still be selected.

The following is the code I implemented for the flood-fill tools FLOOD_RGB and

FLOOD_RGBD. The method isInCircle calculates the Euclidean distance between the

neighboring pixel and the user selected pixel. If the Euclidean distance value is less than

the threshold value the method returns true. This code can be used for both tools since

Equation 2.2.3 is the same as Equation 2.2.4 where the depth component is ignored in the

Euclidean distance calculation.

boolean[][] selectPixels(int x, int y, int sr, int sg,
int sb, float sd, float threshold):

ArrayList<int[]> waiting = new ArrayList<int[]>()
boolean[][] active = new boolean[IMAGE_WIDE][IMAGE_HEIGHT]

int[] startingPoint = new int[2]
startingPoint[0] = x
startingPoint[1] = y

waiting.add(startingPoint)
active[x][y] = true
while (!waiting.isEmpty ()):

int[] waiting_to_look = (int[])waiting.get(0)
x = waiting_to_look[0]
y = waiting_to_look[1]

if ((x+1) < IMAGE_WIDE && (x-1) >= 0):
if (isInCircle(x+1, y, sr, sg, sb, sd, threshold)

&& !(active[x+1][y])):
int[] point_to_add = new int[2]
point_to_add[0] = x+1
point_to_add[1] = y
waiting.add(point_to_add)
active[x+1][y] = true

if (isInCircle(x-1, y, sr, sg, sb, sd, threshold)
&& !(active[x-1][y])):



2. SEMI-AUTOMATED CREATION OF CINEMAGRAPHS 21

int[] point_to_add = new int[2]
point_to_add[0] = x-1
point_to_add[1] = y
waiting.add(point_to_add)
active[x-1][y] = true

if ((y+1) < IMAGE_HEIGHT && (y-1) >= 0):
if (isInCircle(x, y+1, sr, sg, sb, sd, threshold)

&& !(active[x][y+1])):
int[] point_to_add = new int[2]
point_to_add[0] = x
point_to_add[1] = y+1
waiting.add(point_to_add)
active[x][y+1] = true

if (isInCircle(x, y-1, sr, sg, sb, sd, threshold)
&& !(active[x][y-1])):

int[] point_to_add = new int[2]
point_to_add[0] = x
point_to_add[1] = y-1
waiting.add(point_to_add)
active[x][y-1] = true
waiting.remove(0)

return active

Opacity and dispersion are only available to the FLOOD_XY brush. This was a design

choice because opacity and dispersion are not required for foreground selection by the other

tools. Both of these tools use the alpha channel to control how visible a given pixel will be

in an ARGB image. Opacity determines how much of a selected pixel is seen in the final

image. This is done by remapping the alpha value from the range 0 to 255 (where 0 is

transparent and 255 is opaque) to 0 to the new opacity value. Dispersion allows for softer

edges so the selection blends better into the background. This is done by having the alpha

values decrease as they get farther away from the original chosen pixel.

2.2.3 User Interaction

The flow chart Figure 2.2.3 shows how the user interaction works. The RGB (PPM and

depth(PMG) files are organized in chronological order using TIMESTAMP in their respec-

tive file names. Each PPM file is then paired with a PGM file by comparing TIMESTAMP.
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A PGM file is then paired with the closest PPM file by their respective TIMESTAMP val-

ues. Once a PGM is linked to a PPM file it will not be compared again. If a PPM file does

not find a pair it is thrown out and therefore never used. Figure 2.2.2 is an example of the

user interface I designed and includes the tools available.

Figure 2.2.3. Breakdown of how the software works.

The skip and back buttons and the image select scrollbar allow the user to move through

the image pairs within the sequence. Once an image pair of RGB and depth had been

selected, the user could select a specific object for animation using the brush tools. There

is a switch view which sets the unselected pixels’ opaqueness to zero, and the opposite

view where all the selected pixels are tinted red.
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After the user hits the ACCEPT button, confirming that they have made their final

object selection for a given pair, a foreground layer mask of the select pixels is created.

This is done by changing the alpha values of the unselected pixels from the flood-fill to a

opaqueness of zero. The first time an image is accepted in a given GIF creation set, the

background image is created by changing all the selected pixels to a translucency of 0.

These values marked as 0 are replaced by the average of all the corresponding pixels in

the rest of the images. This background is maintained throughout the remainder of the

program. A new image is then created by superimposing the foreground layer mask onto

the background image. This process can be seen in Figure 2.2.4. The final image is then

exported as a tiff file. Tiff files were used because they are an uncompressed file format

and, therefore, prevent data loss.

Figure 2.2.4. An example of the processes by which the final image is formed. Left the
background image, center the foreground layer mask, and right the image produced.

After the image has been written to file, the next pair is loaded in and an estimate is

made based on the previous pixel selections as to which pixels should be selected in the

current image. This process is done using an implementation of the k-nearest neighbor

algorithm5 which was adapted to represent each pixel from the previous image as a x, y,

R, G, B and D tuple. Each value is made uniform to make it between 0 and 1. The x and

y dimensions have a weight of 2, R, G and B values have a weight of 3 and D value has a

weight of 1. These weights were found empirically. Each pixel in the current image locates

5The library can be found here: http://www.stromberglabs.com/posts/8/k-means-clustering
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its approximate closest neighbor within the coordinate system using Euclidean distance.

The current pixel is then assigned to selected or unselected based upon the neighbor’s

selection status. This process is demonstrated in the following pseudocode and illustrated

in Figure 2.2.5.

kd-tree = new tree()
for each px in classified image:

x = <px_x, px_y, px_red, px_green, px_blue, px_depth>
add x to kd-tree

for each px in new image:
y = <px_x, px_y, px_red, px_green, px_blue, px_depth>
find the nearest neighbor, n, of y in kd-tree and classify px as fg(n).

Figure 2.2.5. Example of k-nearest neighbor classification. The pixel’s closest neighbor was
blue so the unknown pixel is classified blue.

2.2.4 Creating the GIF

Once the user has made a final selection of edited tiffs, they are loaded back in one by one.

This method is preferable to loading the selections all at once because all of the images

have to exist in memory before the GIF can be written. Java’s virtual machine is capped at

2 gigabytes which limits the length of the GIF, which is directly influenced by the number

of images that can be imported. In other words, the bigger the images, the shorter the GIF

because fewer images are imported. The individual edited tiffs are added to the GIF using
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the GifAnimation Processing Library, written by Kevin Weiner6. By loading in each image

one at a time, instead of all at once, longer GIFs can be created because less memory is

needed since all that needs to be stored into memory is the GIF itself and the current

image being added.

6The library can be found here: http://www.extrapixel.ch/processing/gifAnimation/



3
Results

An image-based evaluation method was used to analyze how well the three different com-

ponents of the tools performed. The components were flood-fill, automated next frame

selection using the k-nearest neighbor algorithm and the creation of each frame used to

produce a given cinemagraph.

3.1 Analysis of Selection Algorithms

Figure 3.1.1 - 3.1.4 illustrate flood-fill. In 3.1.1 the upper left shows a flood-fill selection

based on depth. The upper right and lower left show the selection based on the same points

but use RGB and RGBD flood-fills respectively. The figure indicates that RGB and depth

data separately are not sufficient to create a selection that is comparable with the ground

truth. However, we get a clear indication that by combining RGB and depth data, it is

possible to get an selection within 2 - 10 flood-fill selections that is reasonably close to the

ground truth. The lower right is the optimal selection created using Adobe Photoshop.

Figure 3.1.2 is the image pair used to generate Figures 3.1.3 and 3.1.4 where the top

is RGB and the bottom is depth. Figure 3.1.3 is a RGB flood-fill and 3.1.4 is a RGBD
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Figure 3.1.1. Illustration of optimal flood-fill selections against the ground truth image.

flood-fill. In both figures, each column represents a specific threshold value, corresponding

to 20, 40, 60, 80 and 100 from left to right. The upper row represents the selection, the

middle represents the isolated foreground and the lower row represents a mock cinemagraph

frame. Figures 3.1.2 - 3.1.4 illustrate how much of an image was highlighted for a given

threshold for different flood-fill versions. In Figure 3.1.3, the flood-fill, when only RGB is

taken into account, shows that although the threshold value highlights the intended red

within the boy’s sweatshirt, parts of the background are highlighted as well. Although

in RGBD flood-fill, Figure 3.1.4, the boy’s sweatshirt is not completely filled with the

maximum threshold value within the figure, the spread outside of the sweatshirt is within

an acceptable region. Another aspect of adding the depth component is that it adds a level
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of usability for picking a threshold. This is because a range of thresholds leads to the same

resulting image, allowing the user to not have to find an exact threshold value to get a

particular image.

Figure 3.1.2. The image pair used by Figure 3.0.3-3.0.4.
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Figure 3.1.3. RGB flood-fill selection at various threshold intervals.

Figure 3.1.4. RGBD flood-fill selection at various threshold intervals.
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3.2 Efficacy of Automatic-Selection

In Figures 3.2.1 - 3.2.3, the top two rows contain five contiguous input image pairs (t0, t1,

t2, t3, t4). From these input image pairs, the lower three rows of results are generated. The

rows from top to bottom are RGB, depth, foreground, selection and the final cinemagraph

image. The first frame is selected by the user. Successive frame selections are produced

based on selections in the previous frames using k-nearest neighbor algorithm. In Figures

3.2.1 and 3.2.2 when the object selected moves very little the automated selection process

works well, albeit with some noise around the object. Figure 3.2.3 is an example that shows

that when there is greater movement of the selected object, the further the frames gets

from the user input, and the accuracy of the selection of the object decreases. However,

the automation does an acceptable approximation of what the next frame should be. As

long as there is some user input for each of the frames, the resulting frames are acceptable.

3.3 Resulting Cinemagraphs

In Figures 3.3.1 - 3.3.9 the top frames contain five key image pairs. The lower two rows

use the upper rows to generate results. The rows from top to bottom are RGB, depth,

foreground and the final cinemagraph image. These images show that the selection tools

overcome varying ranges of situations such as different amounts of depth data, similar

color palettes and varying degrees of motion. The final cinemagraphs produced from those

frames can be viewed in the supplement.
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Figure 3.2.1. Results of automated selection without user intervention over time.
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Figure 3.2.2. Results of automated selection without user intervention over time.
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Figure 3.2.3. Results of automated selection without user intervention over time.
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Figure 3.3.1. Final cinemagraph frame created from key image pairs.
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Figure 3.3.2. Final cinemagraph frame created from key image pairs.
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Figure 3.3.3. Final cinemagraph frame created from key image pairs.
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Figure 3.3.4. Final cinemagraph frame created from key image pairs.



3. RESULTS 38

Figure 3.3.5. Final cinemagraph frame created from key image pairs.
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Figure 3.3.6. Final cinemagraph frame created from key image pairs.
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Figure 3.3.7. Final cinemagraph frame created from key image pairs.
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Figure 3.3.8. Final cinemagraph frame created from key image pairs.
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Figure 3.3.9. Final cinemagraph frame created from key image pairs.



4
Discussion

The objective of this project was to reduce the amount of user inputs required to cre-

ate cinemagraphs. The first step was to include depth data within the process of image

segmentation. The second step was to predict the next frame selection based on previous

foreground selections. The implication of our results is that more accurate depth data can

significantly improve the ability to perform image segmentation at a faster rate. This is

because less clicks would be needed to make an accurate selection if more depth data was

available to the user. However, the resulting depth images from the Kinect indicate that

the depth images were highly affected by natural IR. This led to a lack of usable depth

data in moderate to severe sunlight, hence showing the limitations of using the Kinect in

an outdoor setting.

By using a RGBD camera to create cinemagraphs we see that depth data collected

indoors leads to a highly automated process for generating cinemagraphs. The process

works for an outdoor environment but is not highly optimal in its results. However, in most

indoor conditions the color image has low tonality due to dim lighting whereas the outdoor

setting provides good lighting conditions to generate high tonality color images. Kinect has
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a built-in auto adjust property to deal with changing light conditions. This, however, gets

in the way of the auto select process because the animated selection changes in darkness or

brightness while the background remains static. This also applies to view ability in that the

animation brightness varies in relation to the background image, which in some cases makes

it difficult to seamlessly integrate the animated object into the cinemagraph’s background

image. It would be preferable to have more control over the final image through normal

photographic controls, such as f-stop and shutter speed. This could be accomplished by

mounting a stronger IR depth camera on top of a SLR camera.

The images tended to have a color cast from the auto-correction of the Kinect. I did

not explore a method of correction because the color cast changed from frame to frame.

A solution might be to create a tool similar to color curves in Adobe Photoshop. Since

depth does not perform very reliably outdoors, a future pursuit would entail structuring

the program to ignore depth when unreliable and unavailable and only using depth data

when present to avoid wasting time with unnecessary computations.

In terms of using the Processing library, the Java applet on the screen refreshes only

when the computation has completed and the code returns to the draw method. This

means that when computationally heavy methods are used, there is a lag between the

on-screen representation and what is occurring in the background. This problem affected

usability when it came to the auto-selection using k-nearest neighbor algorithm because it

is slow with more input dimensions. For example, while the k-nearest neighbor algorithm

is assigning pixels to its closest neighbor the applet is frozen for 1-2 seconds. During that

time span, if the user clicks anywhere on the screen it results in the program skipping to

the next image pair and a second wait for 1-2 seconds occurs. An improvement in usability

would be to find a way to have any visual changes rendered in real-time to the screen while

also allowing the user to update the applet in real-time.
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The animated cinemagraphs created for the exhibition Still Moving were successful on

a technical level exceeding my expectations. I knew before I began that due to the size

of the images produced by the Kinect, the quality of the cinemagraphs would be slightly

compromised. That said, the cinemagraphs I created for the show conquered a range of

technical issues. This joint project has provided me with a new academic avenue of study

and a larger visual vocabulary to explore the role of movement in photography.
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